screen 1


美国辛辛那提大学 Bingyu Zhang教授: Recent Progress on Nonhomogeneous Boundary Value Problems of the Korteweg-de Vries Equation

(发布于:2017-06-05 )

主 题:Recent Progress on Nonhomogeneous Boundary Value Problems of the Korteweg-de Vries Equation

主讲人:美国辛辛那提大学   Bingyu Zhang教授

主持人:经济数学学院   马敬堂教授

时 间:2017年6月9日(星期五)下午4:00

地 点:柳林校区通博楼B412

主办单位:经济数学学院  科研处

主讲人简介: 张秉钰,美国辛辛那提大学教授。研究领域为偏微分方程的控制理论及其应用,长期以来以调和分析为主要工具研究非线性色散波方程的非齐次边值问题和控制理论。主要工作发表在《Transaction of American Mathematical Society》、《SIAM Journal on Control and Optimization》、《Journal of Functional Analysis》、《SIAM Journal on Mathematical Analysis》、《Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire》、《Communications in Partial Differential Equations》和《Journal of Differential Equations》等期刊上,SCI总他引500余次。其工作得到国际同行的高度评价,如被J.-M. Coron 教授 (2010 年世界数学家大会一小时全会报告人) 认为是“a world leader in control theory of nonlinear dispersive wave equations”。

内容提要:

Over the past three decades the field of dispersive wave equations has experienced a striking evolution. During that time a number of new ideas and techniques emerged, spurring progress on problems which until quite recently seemed intractable. In this talk we will discuss   various initial-boundary-value problems of the Korteweg-de Vries (KdV) equation, a classical representation of dispersive wave equations. In particular, we will show how the harmonic analysis based techniques developed by Bourgain, Kenig, Ponce and Vega as well as many others play important roles in studying  the well-posedness of initial-boundary-value problems of the KdV equation. An overall review of recent progress on this subject will be provided. Some open questions will be also discussed. 


页面访问量