首页

主题:Fast Fourier-like mapped Chebyshev spectral-Galerkin methods for PDEs with integral fractional Laplacian in unbounded domains

主讲人:南方科技大学 袁惠芳博士后

主持人:经济数学学院 马敬堂教授

时间:2019年10月31日(星期四)下午4:30-5:30

地点:西南财经大学柳林校区通博楼B412

主办单位:经济数学学院 科研处


主讲人简介:

In this talk, we propose a fast spectral-Galerkin method for solving PDEs involving integral fractional Laplacian in d-dimensional unbounded domain which is built upon two essential components: (i) the Dunford-Taylor formulation of the fractional Laplacian; and (ii) Fourier-like bi-orthogonal mapped Chebyshev functions (MCFs) as basis functions. As a result, the fractional Laplacian can be fully diagonalised, and the complexity of solving an elliptic fractional PDE is quasi-optimal. Numerical tests for various decaying exact solutions show that the convergence of the fast solver perfectly matches the order of theoretical error estimates.

我们对于d-维无界区域分数阶拉普拉斯算子偏微分方程提出了一个快速Galerkin 谱方法。数值算例里子快速算法收敛阶与理论结果稳合。


主要内容:

袁惠芳,2014年武汉大学本科毕业获得学士学位,2018年香港浸会大学大学毕业获博士学位。现在南方科技大学从事博士后工作,研究方向为谱方法以及分数阶微分方程的数值解法。